I NDI AN MARI TI ME UNI VERSI TY

(A Central University, Government of India)
End Semester Examination Dec 2019/ J an 2020
B.Tech (Marine Engineering)

Semester-III
UG11T3301- Computational Mathematics
Date: 10.12.2019
Max Marks: 70
Time: 3 Hours
Pass Marks: 35
Part- A
(10×2 = 20 marks)

Compulsory Questions: (The symbols have their usual meanings.)

1. If a population is normally distributed with mean 100 and standard deviation 16, then what is the mean and standard deviation of the sampling distribution of sample mean \bar{X} for random samples of size 4.
2. Derive the normal equations required to fit the curve $x y^{a}=b$ in given set of values of x and y.
3. Two lines of regression are given by $8 x-10 y+66=0$ and $40 x-18 y=214$. If variance x is 9 , find
(i) Correlation coefficient between x and y (ii) the standard deviation of y.
4. Prove the axiom $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$ of Boolean algebra by means of truth table.
5. Find the missing term in the following table:

x	0	1	2	3	4
y	1	3	9	-	81

6. Using the shift operator E, derive the Newton's forward interpolation formula for the function $f\left(x_{0}+p h\right)$ where $p=\left(x-x_{0}\right) / h$.
7. Evaluate the integral $\int_{0}^{6} \frac{1}{1+x^{2}} d x$ using the Simpson's (3/8) rule with 6 equal sub-intervals.
8. Solve the difference equation of the form $y_{n+2}-5 y_{n+1}-6 y_{n}=0$
9. Find an approximate value of root of the equation $x^{3}+x-1=0$ near $x=1$ by using Regula Falsi method up to two iterations.
10. Explain bubble short method with suitable example.

Part- B
($5 \times 10=50$ marks)

Answer any FIVE of the following seven questions

11. (a) The voltage v across a capacitor at time t seconds is given by the following table:

t	0	2	4	6	8
v	150	63	28	12	5.6

Use the method of least square to fit a curve of the form $v=a e^{k t}$ to this data.
(b) Find a parabola of the form $y=a+b x+c x^{2}$ which fits most closely to the following observations:
[5 marks]

x	-3	-2	-1	0	1	2	3
y	4.63	2.11	0.67	0.09	0.63	2.15	4.58

12. (a) Express the value of θ in terms of x using following data

x	40	50	60	70	80	90
θ	184	204	226	250	276	304

Also find θ at $x=43$.
[4+1=5 marks]
(b) Express the function $\frac{x^{2}+6 x-1}{(x-1)(x+1)(x-4)(x-6)}$ as sum of partial fractions by using Lagrange's interpolation formula.
13. (a) The table below reveals the velocity v of a body during the specific time t, find its acceleration at $t=1.1$.

t	1.0	1.1	1.2	1.3	1.4
v	43.1	47.7	52.1	56.4	60.8

(b) The velocity $v(\mathrm{~km} / \mathrm{min})$ of a moped which starts from rests, is given at fixed intervals of time $t(\mathrm{~min})$ as follows:

t	2	4	6	8	10	12	14	16	18	20
v	10	18	25	29	32	20	11	5	2	0

Estimate approximately the distance covered in 20 minutes.
[5 marks]
14. (a) If x and y are two random variables with same standard deviation and correlation coefficient r. Show that the correlation coefficient of x and $x+y$ is $\sqrt{\frac{1+r}{2}}$.
[5 marks]
(b) Prove that $u_{0}+u_{1}+u_{2}+\ldots n-$ terms $=n u_{0}+\frac{n(n-1)}{2!} \Delta u_{0}+\frac{n(n-1)(n-3)}{3!} \Delta^{2} u_{0}+$... ∞. Hence sum the series $2 \cdot 5+5 \cdot 8+8 \cdot 11+11 \cdot 14+\cdots n-$ terms.
[5 marks]
15. (a) Solve the difference equation $u_{n+2}-7 u_{n+1}+10 u_{n}=12 e^{3 n}+4^{n}$. [5 marks]
(b) Write an algorithm to find factorial of a positive integer and draw its flow chart.
[5 marks]
16. (a) Solve by Taylor's series method the differential equation $\frac{d y}{d x}=\log x y$ for $y(1.1)$ and $y(1.2)$, given $y(1)=2$.
(b) Using Runge-Kutta method of fourth order, solve the differential equation $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ with $y(0)=1$ at $x=0.2,0.4$.
17. (a) In a Boolean algebra, prove that:
(i) $\left(x \wedge y^{\prime}\right) \vee\left(x^{\prime} \wedge y\right) \vee\left(x^{\prime} \wedge y^{\prime}\right)=x^{\prime} \vee y^{\prime}$,
(ii) $\quad(x \vee y) \wedge\left(x \vee y^{\prime}\right) \wedge\left(x^{\prime} \vee y\right)=x \wedge y$.
(b) Draw the circuit diagrams for the Boolean functions
(i) $f=p_{1} \wedge\left[\left(p_{2} \wedge p_{3}\right) \vee\left[p_{4} \wedge\left(p_{5} \vee p_{6}\right)\right]\right]$
(ii) $f=\left(p_{1} \vee p_{2}\right) \wedge\left[\left(p_{3} \wedge p_{4}\right) \vee\left[\left(p_{5} \vee p_{6}\right) \wedge p_{7}\right]\right]$
[2+2=4 marks]

